
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 04 | April -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 1

REACT HOOKS ROLE IN DEVELOPMENT

1
SUDESH BHAT

Co-author: - Prof. Alamma B.H

1
PG SCHOLAR, DEPT of MCA, DSCE

CA - ASST. PROF, DEPT of MCA, DSCE

ABSTRACT-

React hooks introduced in 2018 as a way to use state and side effects in react function

components. Functional components are called as functional stateless components. They allow us

to use state with react. React hooks are basically functions that able hook into react state and also

life cycle feature from function. It solve wide verity of problems like maintaining thousands of

components. In this paper will describe about some practical ways of overcome from the problem

of using state.

Keywords:- ReactJs, componentDidMount, componentDidUpdate, componentWillUnmount,

useEffect, useState.

INTRODUCTION

React is invented to state management and

side effect. It make more efforts less

without use this.setState in a class. React

hooks allow us to write react application

only with function component. React

hooks don’t work inside a class because

they let us use react without class. By

doing this we can totally avoid the life

cycle method like component Did Mount,

component Did Update, component Will

Unmount. Insted of this we use react hooks

such as useEffect.

LITERATURE SURVEY

Hooks are the new feature introduced in the

React 16.8 version. It allows you to use state and

other React features without writing a class.

useState will be used to add states in functional

stateless components. useEffects will constantly

considered when the component is gathered and

updated.

METHODOLOGY

For the analysis of hooks I’m going to use

ReactJs. React is a JavaScript library can be used

as a base in the development of single-page or

mobile applications it has the

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 04 | April -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 2

powerful hooks called useState, useEffect.

You know that the states cannot be used in

functions, but with hooks, we can use

states. Another reason is the handle side

effect in react component. It means, now

you can use newly introduced state such as

useEffect

useState

useState is one of basic react hook. With

which we can add states in functional

stateless components. It takes a parameter

which is states initial value and return two

properties in array one is state and other

one is method which used to update it.

The useState hook accepts an initial state

as argument and returns, by using array

destructing. Two variables that we want to

name them. Where the first variable is

actual state, the second variable is a

function to update the state by providing a

new state.

After we call useState

It declares a state variable. Our variable is

called count however we could call it

whatever else, like to banana. This is an

approach to protect a few values between

the function calls — useState is another

approach to utilize precisely the same

abilities that this.state gives in a class.

Ordinarily, factors disappear when the

capacity exits yet state variable are

safeguarded by React

Arguments need to useState

The main contention to the useState() Hook is

the initial state. Not at all like with classes, the

state doesn't need to be an object. We can keep

a number or a string if that is all we need. In

our example, we simply need a number for

how often the client clicked, so pass 0 as initial

state for our variable. (On the off chance that

we needed to store two unique values in state,

we would call useState() twice.

Output of useState

It return a pair of values: the present state and a

function that refreshes it. This is the reason we

write const [count, setCount] = useState(). This

is like this.state.count and this.setState in a

class, with the exception of you get them in a

pair. In case you're curious about the linguistic

structure we utilized, we'll return to it at the

base of this page

[fig.1] Demonstration of useState.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 04 | April -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 3

useEffect

The useEffects technique is constantly

considered when the component is

gathered and updated. With it we can

replace the component Did Mount,

component Did Update and component

Will Unmount lifecycles. It executes the

function inside it and has a discretionary

second parameter, which is an array of

properties to be seen inside the scope of

the stateless part. At whatever point any of

them are updated, the function is executed

once more.

useEffect Purpose

By utilizing this Hook, you disclose to

React that your part needs to accomplish

something after the render. React will

recall the function we passed (we'll allude

to it as our effect), and call it later in the

performing the DOM updates. Right now,

set the document title, yet we could

likewise perform data fetching or call

some other basic API

Call useEffect inside a component

Setting useEffect inside the component lets

us get to the count state variable (or any

props) directly from the effect. We needn't

bother with an other API to read it — it's

as of now in the function scope. Hook

grasp JavaScript terminations and abstain

from presenting React-specific APIs where

JavaScript as of now gives an answer.

useEffect run after every render

It runs both the main render and after each

update. Instead of intuition regarding

"mounting" and "refreshing", you may think

that its simpler to believe that effect happen

"after render". Respond ensures the DOM has

been refreshed when it runs the effects.

[fig.2] Demonstration of useEffect

Rules for using Hooks

Must Call Hooks at the Top Level.

Try not to call Hooks inside loops,

conditions, or nested functions.

Must Call Hooks from React Functions.

Try not to call Hooks from ordinary

JavaScript function.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 04 | April -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 4

CONCLUSION

However Hooks solve a wide variety of

seemingly unconnected issues in React.

With Hooks, you can extract stateful logic

from a component so it very well may be

tried freely and reused. Hooks permit you to

reuse stateful logic without changing our

component hierarchy. This makes it simple

to share Hooks among numerous

components or with the network. Hooks let

us split one component into littler functions

dependent on what pieces are connected (for

example, setting up a membership or

fetching information), instead of forcing a

split dependent on lifecycle techniques.

REFERENCE

•https://reactjs.org/doc

•Darrel Greenhill, jack Francik, jay kirithika

“UX Design in web Application”, IEEE 2016

•“Web Workers API,” MDN Docs,

developer.mozilla.com

http://www.ijsrem.com/

